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We discuss a band parametrization scheme (within the framework of the Green’s-function
method, i.e., the Korringa-Kohn-Rostoker-type theory) specifying the phase shifts n,, 7,
and 7, as functions of energy. This approach is particularly useful for the noble and transition
metals, where both d-band and free-electron-like effects are important. The 7;(E) for a
family of elements are expected to have characteristic energy dependences, with each n,;(E)
being specified over a substantial energy range by a few parameters. Such a parametrization
scheme serves to present the information contained in an electron energy-band structure in
a form in which one can conveniently blend empirical information with the results of first-
principles calculations. First, we show the existence and form of the characteristic energy
dependence of the tann,’s for the noble metals. We then use our phase-shift parametrization
scheme in a semiempirical way to find the band structure of Ag. To do this, we use a first-
principles calculationas a guide, and adjust the parameters specifying the tann,’s to fit some
available Fermi-surface, optical, and photoemission data. The realistic phase shifts so ob-

tained correspond to a modified crystal potential.

Thus the semiempirical phase-shift param-

etrization scheme offers a practical and conceptually clear way of effectively incorporating
experimental information about the solid state into the potential.

I. INTRODUCTION

In recent years there has been much interest in
the development of parametrization and interpolation
schemes for describing electron energy-band struc-
tures. !=® Broadly speaking, there are two related
reasons for the development of such schemes.
Clearly, for a given potential, current technique in
first-principles band calculations allows one to cal-
culate accurately the band structure and related
physical quantities. Thus one aim of interpolation
and parametrization schemes is to present the en-
ergy-band information in a form so flexible and
simple as to be convenient for treating rather com-
plex properties of solids in a realistic way. This
is basically a matter of computational speed, i.e.,
making approximations that cast the theory into a
form suitable for minimizing the time required in
computations involving fast digital computers. Such
speed may, for example, make self-consistent cal-
culations feasible in a desired situation (say for
studying magnetic properties of metals), or allow
a very large number of points within the Brillouin
zone to be treated, as is desirable when considering
optical properties. A second aim of parametriza-
tion schemes is to blend empirical information with
the results of first-principles calculations. Such a
blending allows one to adjust the phase shifts ob-
tained in a priori calculation so as to yield energy
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bands consistent with experimental data. The real-
istic phase shifts so obtained correspond to a modi-
fied crystal potential. (Of course, in practice one
often tries to satisfy these two interrelated aims at
the same time.)

This separation between information describing
the potential, and the calculation of the band struc-
ture once the potential is specified, is made par-
ticularly clear in the Green’s-function formalism.
There, for a muffin-tin potential, all the information
about the potential is contained in the phase shifts
or logarithmic derivatives of the radial wave func-
tions; while the lattice-structure information is
contained in the structure coefficients, the calcula-
tion of which takes the majority of computational
time. With this in mind, we have developed an en-
ergy-band parametrization scheme? within the
framework of the Green’s-function [Korringa-Kohn-
Rostoker (KKR)] method.® Our efforts have been
devoted to the second of the two aims mentioned
above, viz., effectively incorporating experimental
information about the solid state into the potential
or, strictly speaking, into the phase shifts for the
electrons in the solid. Our emphasis-has been on
developing a scheme that is useful and accurate
across the energy range (~1 Ry) necessary to treat
the complete band structure for a typical metal. As
an example of the use of such a scheme, we have
developed a semiempirical band structure for silver.
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Such a parametrization scheme is based on two
facts. First is that in the KKR method the effects
of the crystal potential are entirely embodied in the
phase shifts n;( E) and are completely separated
from crystal-structure effects. Second, because
of the very rapid convergence of the Green’s-func-
tion method, it suffices—except perhaps for very
heavy metals—to include only the =0, 1, and 2
angular momentum components (and thus three
phase shifts in a nonrelativistic calculation) in order
to achieve high accuracy in the energy eigenvalues
E(K).

Our scheme is based on the expectation that the
energy dependence of the phase shifts can be repre-
sented accurately over a wide range of energy with
a limited number of parameters. Moreover, we
expect that the parametric form for the energy de-
pendence of the phase shifts will be the same for a
family of elements. Once that form is established,
one can obtain a particular band structure by simply
adjusting the values of the parameters to agree with
some first-principles calculational results and/or
empirical data. In Sec. II, we have verified that
the expectation is justified for the noble metals (for
the present omitting relativistic considerations) by
finding one parametric form (for each I value) for
the 7 =0, 1, and 2 phase shifts which allows one to
fit the band structures obtained by first-principles
calculation for two potentials each for Cu and Ag
with high accuracy. Moreover, we show that with
one simple, and rather obvious, alteration, the
same parametric forms describe the band structure
of Al. Thus the forms we find for the energy-de-
pendent phase shifts probably have rather wide ap-
plicability, for example, to the 34 transition
metals.

In Sec. III, as an application of the phase-shift
parametrization scheme, we develop a semiempir-
ical band structure for silver. To do this, we use
a first-principles calculation as a guide, and adjust
the parameters specifying the n;( E) to fit Fermi-
surface, optical, and photoemission data.

Finally, in Sec. IV, we make some brief conclud-
ing remarks about the nature and possible utility of
the phase-shift parametrization scheme.

II. DEVELOPMENT OF PARAMETRIZED EXPRESSIONS FOR
ENERGY-DEPENDENT PHASE SHIFTS

For the Green’s-function (KKR) method, the en-
ergy eigenvalues are the solutions of the determi-
nantal equation

det{By;;p ;» tanm, +08;7: 8,50 =0, (1)

where the By;,;.» are the energy- and E—dependent
structure coefficients, and the phase shifts n, are
given by
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Here 7; denotes the radius of the inscribed sphere
of a muffin-tin potential; R,(r) is the radial wave
function; and j,(x») and #,(x7) are the spherical
Bessel and Neumann functions. The energy is given
in dimensionless form by €, where

E=(21/a)%+V,, (4)

So the zero of € corresponds to the constant poten-
tial V, between spheres of the muffin-tin potential.
For positive ¢, the quantity « is proportional to the
square root of €,

k=(2n/a)VeE » (5)

and is appropriately modified® for negative «.

The key step in the phase-shift parametrization
scheme is to arrive at functional forms for the €
dependence of the tann,, so that each tann, can be
specified over a wide range of energy in terms of
a few parameters. To do this for the noble metals
we are guided by the behavior found in four first-
principles calculations performed by Segall, two
each for copper® and silver.” For Cu, these calcu-
lations were for the “Chodorow potential, ” for
which the tann, are shown in Fig. 1, and an /-de-
pendent potential giving the tann, shown in Fig. 2,
For Ag, the first-principles calculations were for
a potential based on Hartree free-ion wave func-
tions giving tann, shown in Fig. 3, and for a po-
tential based on Hartree-Fock free-ion wave func-
tions giving tann, shown in Fig. 4.

One is much more restricted in the functional
forms for the energy dependence of the tann, than
one might expect at first thought. The basic simi-
larity of the tann, behavior in all four cases is evi-
dent from an inspection of Figs. 1-4. The behavior
of tann, shows a marked cusp at €=0 followed by a
maximum at positive €. The sign of tann, for small
| €l is the same for both positive and negative €.
(For the Cu I-dependent potential behavior shown
in Fig. 2, in contrast to the other cases tann, is
negative for small | €|, and instead of having a
maximum in |tann,l for small positive €, the curve
of tann, simply levels out into roughly linear be-
havior.) The tann, curves are basically featureless,
being rather close to straight-line behavior and
changing sign at €=0. The tann, curves show a
singularity at a value of €=¢€,. This is the so-called
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FIG. 1. tann’s for Cu Chodorow potential from first- FIG. 3. tannm,’s for Ag potential based on Hartree

principles calculation (Ref. 6).

“d-band resonance,” corresponding roughly to the
center of the d bands. (We note that if one scales
€ to €, for €/€, between 0 and 1, the curves of
tann, vs €/€, are close to identical for all four po-
tentials.) The sign of tann, is the same for suffi-
ciently small positive and negative €, but a sign
change can occur rather quickly for increasing |€]|.
One can think of the relative positions of the two
most prominent features in the tann, behavior, the
7o cusp and the 7, singularity, as a measure of the
location of the d bands relative to the free-electron-
like conduction bands.

The final form found for the functional dependence
of the tan7,’s on € evolved from trial forms used to
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FIG. 2. tanp,’s for a Cul-dependent potential from
first-principles calculation (Ref. 6). (The discontinuity
in tann at € ~0.5 corresponds to a discontinuity in the
potential within #; for7 =0 introduced in the development
by Segall of his I-dependent potential.)

free-ion wave functions from first-principles calculation
(Ref. 7).

match the low-€ behavior. The choice of trial
forms developed from an examination of the low-€
part of the d-band structure. This occurred because
there is a constraint imposed on the low-€ behavior
of tann, by the low-€ behavior of the By, structure
coefficient.® (This structure coefficient enters into
the determination of the low-lying d-band energies. )
This constraint became evident upon studying the
X, and L, energy levels for the Chodorow potential,
because these levels fall near €=0.

The secular determinants giving the X; and L,
energies are of the form

0= (Bygooo tanmg + 27 V'€) Boozo tanm,
Booao tan’f]o (BZUZO tannz + 277 W/?) ’
(6)
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FIG. 4. tann;’s for Ag potential based on Hartree-
Fock free-ion wave functions from first-principles calcu-
lation (Ref. 7).
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FIG. 5. Approximate solution of Eq. (6) as given by Eq.

(7) for tanm, considering different functions of €. Solutions
correspond to intersections of curve for By, with that
for 2m(e)!/?/tann,.

where, of course, the B;,;  appropriate to X and
to L are to be used. Figure 5 shows the variation
of Bgysy at X for energies in the range where the
lower X, root occurs. (Similar behavior applies to
the lower L, root.) The € position for which the
determinant in (6) goes to zero (giving the X, eigen-
value) is primarily determined by the behavior of
the Bgyy term. Thus, to a good approximation the
X, energy is determined by the condition

Baoa) =27 \fg/tannz o (7)

Now, because of the particular energy dependence
of Bgyg, it is not a simple matter to find a form for
tann, having a “resonant” character and giving one
and only one solution for € in (7). For example,
the two long dashed curves in Fig. 5 show the diffi-
culties that arise if one tries to use a form

tany=a( o - +)
annz—a(eo_i &/

This gives a shallower curve of tann, vs € than that
obtained from the first-principles theory; and one
typically gets either two or no roots rather than one
root. On the other hand, a form with tann,
~a€’?/(c - ;) closely follows the first-principles
behavior, and gives only one root.

At this point it is useful to consider the leading
terms in the series expansions of the Bessel func-
tions entering Eq. (2). For small x,

Jilx)~ x* ®)

and
n(x)~ 5=+ | (9)

Then to the extent that the € dependence of the loga-
rithmic derivative can be neglected, we find for
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small € that
[lejl(K’V)]"’Kl"'é/z ’ (10)
(R, ), ny ()]~ V2 1)
and therefore
tannl ~ €(21-»1)/2 . (12)

Thus the behavior tann,~a€’/?/(€ - €;) indicated
by the discussion in connection with Fig. 5 is just
that expected from Eq. (2) if the Bessel functions
dominate the € dependence of the tann, at low €; and
the factor of (€ — €)™ allows for the presence of the
“d-band resonance.” The qualitative characteristics
of the tann; near € =0, noted in the discussion of
Figs. 1-4 above, can also be understood on the
basis of the dominance of the Bessel functions in
that energy regime.

Therefore one is led initially to try the following
leading terms:

tanmy~ €172, tanm,~ €¥/2, tanm,~€5/%/(e - ¢) .
(13)

To complete the specification of the functional
form of the tann,, we adopted the empirical proce-
dure of comparing the band structures arising from
our parametrized tany, to the first-principles re-
sults in the four cases corresponding to Figs. 1-4.
Weused as a rule of thumb the criterion of selecting
the simplest form for the tany, that would fit all the
first-principles energies, across a range of a ryd-
berg or more, witha maximum error of 0.01 Ry for
any single energy.

To allow for the possibility of a maximum in
tany, for increasing €, one has to include a higher-
order term in € of competing sign, e.g., tann,
~¢el/2(q —p€). It turns out that to get an adequate
over-all fit for tann, requires a somewhat more
complicated form:

tanmg=s,1 €131 - 5,€)/(1 +53€)

+541-0(e)]1 €132, (14)

where

o(x)=0 for x<0 and o(x)=1 for x>0. (15)

The final term in (14) is necessary to treat the be-
havior for negative €. The negative-€ behavior is
of rather minor consequence in practice since it
corresponds to at most the very bottom in energy
of the over-all band structure.

Similarly, to describe tann, across the entire en-

ergy range involves a more complicated form than
that given by (13); for d-band metals, we have
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FIG. 6. Comparison of tann,’s for Cu Chodorow poten-
tial from first-principles (Ref. 6) and phase-shift param-
etrization calculations. (In regions where the phase-
shift parametrization results are not shown, the results
of the two calculations essentially coincide. Parts of the
dotted curves were inadvertently omitted in Ref. 4.) The
vertical line labeled ¢ indicates the Fermi energy.

(d-band metals)

5/2
tann,=d, L%i: +o(e —d1)< -(-6_—‘31—)175 +d4€2> .
(16)
Finally, the form of tann, can be fit satisfactorily
by including the next-order term in € beyond that
in (13):

tanm, =p, | €1 Y31 - pye)e . (17

The absolute value of € is used in several places in
(14), (16), and (17) to take account of the negative-¢
behavior with the greatest simplicity.

Figures 6 and 7 show typical behavior, for Cu and
Ag, respectively, for the comparison between the
first-principles evaluation of the phase shifts and
the fitting by the phase-shift parametrization. The
parametrized fitting almost exactly coincides with
the first-principles phase shifts except for the few
places indicated by a dotted curve.

The values of the ten parameters (four for tann,,
two for tanm;, and four for tann,) necessary to speci-
fy the tann;, and hence the electron energy-band
structure, for the noble metals are given in Table
I for the bands corresponding to the Cu Chodorow
and “I-dependent” potentials and to the Ag potentials
coming from Hartree and Hartree-Fock ionic wave
functions. (We also include for later reference the
parameter values characterizing the semiempirical
band structure found for Ag using the phase-shift
parametrization technique as described in Sec. III.)

These parameters were obtained by requiring that
Egs. (14), (16), and (17) fit the tany, given in the
graphs at the appropriate number of € values. The
success of this approach relies upon choosing the
€’s such that the (tann,, €) pairs represent the key
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features of the respective graphs. Initially, the
phase shifts for the four potentials (and therefore
the parameters in Table I) were examined indepen-
dently, but the following pattern emerges for all.

For (14), one (tann,, €) pair at €<0 and three
pairs at € >0 are necessary to fit the parameters.
The key features of tann, are the nearly linear re-
gions for €<0 and for € >0. 3, and the maximum in
the small positive energy region. Consequently, the
€’s for the four pairs are chosen such that ¢,
==-0.03to —0.18, €,=0.05 to 0. 2 (the maximum in
tann,), €;~0.7, and €,~1.4,

Because tan7, is nearly linear, the choice of the
(tanm,, €) pairs for the fitting was not very critical,
and these were chosen to be at €~0.1 and 0. 9.

For tann,, finding the parameters in Eq. (16) re-
quires choosing two points at €< €, and two points
at € >¢;, The key features of the tann, behavior are
the discontinuity (at €,) and the near linearity in re-
gions where the effect of the discontinuity becomes
small. Since the approximate €, was known, one
value of € >€, was chosen such that it was quite close
to that value of € for which d(tann,)/de€~0.5 to 1.0
(i.e., on the “shoulder” —region of maximum curva-
ture—of the tann,-vs-€ curve); while the second
€ >€, was chosen at €~¢€,+1.0, where the tann,-vs-€
curve is approximately linear. For €<¢,, the two
€’s used were €~ €, [where ¢, is the value of € at
which d(tann,)/de,=0.5, i.e., slightly to the nega-
tive side of the low-€ shoulder of the tann,-vs-¢
curve] and €~¢€, - 0. 2, where the tann,-vs-€ curve
has flattened out.

In Table II, we give a comparison of the energy
eigenvalues at some high-symmetry points as cal-
culated directly in the first-principles calculations
and from the parametrization scheme. The data of
Table II show only a small part of the energies in-
vestigated since we looked at about 100 states for
K both at symmetry points in addition to those shown
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o .\
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FIG. 7. Comparison of tann,’s for Ag potential based
on Hartree-Fock free-ion wave functions from first-
principles (Ref. 7) and phase-shift parametrization calcu-
lations.
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TAB‘LE I. Parameters entering expressions for tann, given by Eqs. (14) and (16)—(18) of text.

S1 S2 S3 84 b1
Cu (Chodorow) 0.767 1.331 1.552 0.550 0.300
Cu (I dependent) 0.279 -0.801 0.062 oee -0.019
Ag (Hartree) 1.170 1.240 2.270 2.240 0.331
Ag (Hartree-Fock) 0.660 1.560 1.550 0.620 0.020
Ag (semiempirical
1. . . - 6. -0.

phase-shift parametrization) 555 1.590 1.563 6.780 0. 087

Al 4.176 0.607 5.800 2.000 0.720
) dy dy ds dy

Cu (Chodorow) 0.520 0.360 -0.160 0.015 0.105
Cu (I dependent) -0.093 0.468 —~0.158 0.015 0.107
Ag (Hartree) 0.595 0. 250 -0.212 0.001 0.104
Ag (Hartree-Fock) 2.300 0.024 -0.300 0 0.166
Ag (semiempirical .

phase-shift parametrization) 1.025 0.173 0.336 0.011 0.198
Al 0.390 see 0.100 oo -0.024

2For Cu with the /-dependent potential, all band energies occur for positive €. Thus no value of s, is required.

in Table II and also along symmetry axes. Actually,
we did not quite achieve the goal of no departure
from the first-principles calculations greater than
0.01 Ry. Typically, for a few energies at the top of
the range considered, roughly a rydberg above I'y,
the error somewhat exceeded this. (This energy
region where the departure exceeds 0.01 Ry cor-
responds to the high-€ region in Figs. 6 and 7 where
the parametrized phase shifts given by the dotted
curves deviate significantly from the first-princi-
ples values.) However, the root-mean-square
deviation was very much smaller than 0.01 Ry.

We have also parametrized the phase shifts in the
case of a simple (nearly free-electron-like) metal.

This has been done by retaining the same expres-

sions for tann, and tanm, as

for the noble metals.

For tanm,, the resonant character has been elimi-

nated, and for positive € we have used tann,

~ €5/2.

[This amounts to multiplying the expression in (16)
by (¢ -d,). However, for negative ¢, we find it
necessary only to retain the € term resulting from
this multiplication.] For simple metals, we find

(simple metals) tann,=

ds|€|%3+o(€)de® . (18)

Thus for Al we use (14), (17), and (18) to find the

parametrized phase shifts.

The phase-shift param-

eters for Al, obtained by fitting the phase shifts in

TABLE II. Energies (in Ry) at high-symmetry points from first-principles (fp) and phase-shift parametrization (psp)

calculations.
Ag potential
Agpotential from Hartree-
Cu Chodorow Cu /-dependent from Hartree Fock wave
potential potential wave functions functions Al

State fp psp fp psp fp psp fp psp fp psp
Ty -1.043 -—1,043 -0.836 -0.831 -0.857 -—0.852 -0.,781 -~0.787 -—0.463 —-0.462
Ty —-0.584 —0.577 -0.433 —-0.434 -0.522 -0.522 —-0.654 -0.653 oe e
Tyse -0.644 -0.638 -0.505 -0.506 -0.590 -—0.592 -0.703 -0.693 L see
Ly -0.778 -—0.787 —0.646 -0.652 -—0.706 -0.703 - 0.806 -0.802 s oo
Lg -0.648 —0.644 -0.511 -0.511 -0.594 -0.588 -0.729 -0.728 s
L, -0.539 -—-0.534 -0.380 -0.379 —0.468 ~0.469 -0.602 -0.600 o e
Lg: —-0.422 -0.421 -0.247 —-0.244 -0.342 -—-0.346 - 0,222 -0.224 0.020 0.027
Ly -0.081 -0.076 0.189 0.192 -0.026 ~0.026 -0.035 -0.035 0.049 0.051
X -0.781 -0,791 - 0.666 -0.673 -=0.717 -0.711 -0.829 -0.819
X -0.745 -0.754 - 0.630 -0.633 -0.693 -0.689 -0.823 -0.814 e see
X, -0.541 -0.538 -0.383 —-0.383 —0.472 -0.472 - 0.604 -0.609 s
X5 —-0.526 ~-0.525 - 0.366 -0.366 =—0.453 ~—0.453 -0.585 -0.588 ...
Xy -0.224 -0.218 -0.029 -0.023 -0.184 -0.183 -0.051 - 0.050 0.159 0.167
X 0.169 0.173 0.389 0.392 0.196 0.196 0.175 0.169 0.235 0.239
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FIG. 8. Comparison of tann;’s for Al from first-prin-
ciples (Ref. 8) and phase-shift parametrization calcula-
tions.

Segall’s first-principles calculation, ® are listed in
Table I; and in Fig. 8, the corresponding phase
shifts given by (14), (17), and (18) are compared

to the values for the first-principles calculation.
Also, a comparison of the band energies for Al at
high-symmetry points from the first-principles and
phase-shift parametrization calculations is included
in Table II.

One could use simpler approximations than those
of (14), (16), and (17) if one were willing to surren-
der accuracy and/or restrict oneself to a smaller
energy range. For example, one could use a
straight-line fit to tann, as an approximation to the
curve given by (17).

III. SEMIEMPIRICAL DETERMINATION OF SILVER BAND
STRUCTURE BY PHASE-SHIFT PARAMETRIZATION
TECHNIQUE

The phase-shift parametrization (PSP) scheme
can be readily employed in the case where, on the
basis of a first-principles calculation, one has a
good semiquantitative guide to the n, behavior. Ad-
justments would then be made to bring about accord
with available experimentally determined data on
the electronic structure. Once the parametric
forms of the tann;, such as (14), (16), and (17),have
been determined, the PSP scheme is particularly
flexible with regard to the amount of empirical data
thatcan be incorporated. One could make very
minor adjustments to a first-principles calculation,
or one could develop a substantially experimentally
determined band structure. In this section, by
considering the behavior of silver, we shall illus-
trate the use of the PSP scheme to substantially ad-
just a first-principles band calculation by the use
of experimental data. This amounts to modifying
the original potential by the introduction of experi-
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mental data.

The early band calculations for Ag done by Segall’
showed that the principal difficulty in obtaining sat-
isfactory results was in properly positioning the d
bands with respect to the more free-electron-like
conduction bands. There have been suggestions®®
for shifting the d bands upward from the value found
in Segall’s calculation (using a potential determined
from Hartree-Fock free-ion wave functions) in some
fairly crude way in order to get agreement with ex-
perimental optical or photoemission data. The
phase-shift parametrization technique offers a par-
ticularly elegant and physically reasonable way of
making this sort of correction to a first-principles
calculation by use of empirical data. Indeed, using
the phase-shift parametrization technique, one can
blend a good deal of experimental information into
the framework of a first-principles calculation.
Table III gives an outline of the way we have done
this for Ag using Segall’s calculations (for a poten-
tial determined from Hartree-Fock free-ion wave
functions) as a starting point.

Since there are a substantial number of param-
eters in the expressions for tann,, tann;, and tann,
[given by (14), (16), and (17), respectively], the
values of which are to be determined, there is a
correspondingly substantial number of steps and
pieces of data to be used in the fitting. If one were
willing to accept a band structure with less over-all
accuracy, one could use simpler forms involving
fewer parameters for the tann,, and hence need
fewer data and steps in the process of evaluating
the parameters.

Table III shows the combination of types of experi-
mental data and first-principles calculational re-
sults used in the parametrization procedure. The
label 7, at the end of most lines indicates the phase
shift about which that step provides information.

(In Table ITI, and the associated discussion below,

TABLE III. Semiempirical phase-shift parametrization
scheme for silver.

(a) E(L,.) from Segall’s Hartree-Fock (Ref. 7), n

(b) Set Ep, from Fermi-surface analysis (Ref. 10) and
photoemission data (Ref. 11): Ez=E(L,.)+0.3 eV

(¢) E(Ljypper) =Ep—3.9eV, optical (Ref. 10), 7,

(d) E(X3) =E(Lj3 gper) —3.5€V, photoemission (Ref. 12),

N2

(e) E(Ty5) —E(X3) from (Ref. 7) Ag H-F—E(Ty9), 7,

(f) E(Xy), optical (Ref. 10), ny— 1y completely determined

(g) Belly radii (Ref. 13) 0y, 1, at Ep— 1, completely
determined

(h) E(Ty) from (Ref. 7) Ag H-F, 0

(i) E(L{ ypper) Photoemission (Ref. 11), 1,

(§) E(Wjiower)s relative position in d bands (Ref. 7),
ng—Ng completely detevmined

(k) Checks: neck radius (Ref. 13), E(X,) —E(X;) optical
(Ref. 14), self-consistency of Ep
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“Hartree-Fock” or “H-F” is used to denote the
results of Segall’s calculation” using a potential
based on Hartree-Fock free-ion wave functions. )
We now present a detailed discussion of the param-
etrization procedure following the steps listed in
Table III.

First we note that, strictly speaking, there are
11 rather than 10 parameters in our scheme. This
is because the constant potential between spheres
of the muffin tin [i.e., V, of (4)] which sets the zero
of € is also a parameter. We choose this as the
value in Segall’s first-principles H-F calculation.
So the relationship between E and € is for Ag

€=(E +0.7126)/0. 6396

with E in Ry.

The steps in the parametrization procedure follow
where the numbers correspond to those in Table III:
(a) Take E(L,) from Segall’s H-F band calcula-
tion. (The L, state is a pure p state, i.e., only

tany, enters into the energy determination. )

The most conspicuous feature of the s and p con-
duction-band behavior from the phase-shift point of
view is that tann, and tann, both go to zero as € goes
to zero. Thus, matching the L,. energy to the first-
principles H-F result and choosing the scale of €
as in (19) basically sets the over-all scale of con-
duction-band behavior from the phase-shift point of
H-F calculation.

The L,. energy is given by

(19)

Ly, 0=Byy,tann +21Ve . (20)

From H-F, E(L,.)=- 0. 222 Ry, so that from (19),
€(L,+)=0.767. Thus, using the value for the struc-
ture coefficient at this € in (20) gives

tann,(¢=0.767)=-0.01251 . (21)

(b) We take the value of Er —E(L,.) from photo-
emission data'!:

Ep=E(L;)+0.3eV-Ez=-0.200Ry .  (22)

(One can obtain'® the same energy difference from
the experimentally determined neck radius and neck
mass.) This gives

€r=0.8014 , (23)

and effectively places the Fermi energy relative to
the conduction bands.

(c) Choose E(Lj,) (the upper L; energy—a purely
d-like state) by requiring that the difference between
the Fermi energy and the top of the d-band complex
as given by E(L,,) gives the experimental value for
the optical interband edge

EF=E(L39+3. 97 eV"E(L32)= _0.492 Ry . (24)

This step essentially sets the d-band energies rela-
tive to the conduction bands using the same physical
criterion as that in the paper of Cooper, Ehrenreich,
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and Philipp. 1
The Lj; energy is given by the determinantal
equation

- (33121 tam72+ 21T\[E)
By astany,

Bisstann,
(Bgggetann,+2nV€)|

(25)

Equation (25) gives a quadratic equation for tan7,
at €(L3,)=0.345. However, it is simple to select
the physically meaningful root of the quadratic equa-
tion. First, we note that one root falls very close
to the value given by the sign change of By, +27Ve€/
tann,, and for all of the first-principle calculations
that have been considered the L3, root was very
closely given by that sign change. Second, the dis-
carded root would lead to a singularity in tann,,
i.e., the “d-band resonance,” above the L, energy.
This would be physically meaningless since the d-
band resonance falls in the middle of the d-band
complex, and the Lj, energy is at the top.

Choosing the appropriate root of (25) gives

L3’0

tann, (€ =0. 345)=-0.085120 . (26)
(d) Take
E(Ljy) —E(X;)=38.5eV (27)

from the photoemission measurement'? of the d-band
width in Ag. Here X; is a purely d-like state at the
bottom of the d-band complex.

Since E(Lj,) is given by (c), this yields

E(X3)=-0.749 Ry— €(X,)=~0.057 . (28)
Using the fact that €(X;) is the root of

X, 0= Byppptann,+ 21V € , (29)
this gives

tann,(e = —0.057)=0.001137 . (30)

(e) Take E(Ty5:) —E(Xg)=0.120 Ry from the first-
principles H-F calculation. Since E(X;) is already
known from (d), this gives

E(F%’)=—0'629RY" €(rz5l)=0. 131 . (31)

(Physically, this means that we are taking the width
of the lowest d band from the H-F calculation.)
Since (T'y.) is given by

r25" 0= Bzzaat&ﬂﬂz'*‘ 27)“\[_6_ > (32)
this yields
tann,(€ =0.131)=0.050323 . (33)

(f) Take E(X;) —E(L,,)=0.017 Ry from the H-F
calculation. This is a very small number since
the topmost d band is almost flat; and since E(L3,)
is known from (c), this serves to determine E(Xj):

E(X;)=-0.475 Ry . (34)
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From the optical data, *°

E(Xyp)-E(X;)=5.5eV (35)
so that
E(Xyp)=-0.071 Ry—€(X,.)=1.003 . (36)

X, is a purely p-like state given by
X4l, 0=Bmlotan171+21r\/—€_ ’ (37)

and using the known values of the structure coeffi-
cient

tanm,(€=1.003)=0.002468 . (38)

Steps (a) and (f) give tann, at €=0.767 and €
=1.003, respectively. This allows us to evaluate
the two parameters p, and p, in Eq. (17), which de-
termine the behavior of tann,. The values found are
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listed in Table I.

(g) Determine tan7n, and tan7n, at € to match the
experimentally measured (100) and (110) belly
radii. In the analysis we use the values for the
belly radii found in Roaf’s analysis of Shoenberg’s
de Haas-van Alphen data.!® These are

F¢100yperty = 0. 8043 % 27/a ,
(39)
k(no)bolly = 0- 7542>< 27T/a .

(These values differ somewhat from those found by
Bohm and Easterling!® and by Morse!® using the
magnetoacoustic effect.)

The (100) belly radius corresponds to the values
of tann,, tanm,, and tann, at €, satisfying the 3X 3
determinantal equation giving the A; band energies:

|
(Boooo tanmg + 2 v €5) Bygqo tanm, Bagoo tanm,
Al , 0= 31000 tanno (B1010 tanTh + 27T \/?F) BZOIO tan'nz . (40)
Baggo tanm, Bagotann, (B apzo tann, + 27V €x)

The (110) belly radius corresponds to the values of tann,, tann,, and tanm, at € satisfying the 4 X4 de-

terminantal equation giving the Z, band energies:

(Boooo tanng + 21 V€ ) B0 tanm,
2 0 Bjooo tanmg (Byorotanm, + 21 V€p)
1, U=
Bigoo tanm, Bigiotann,
Bz tanm, By tann,

Now since € and the belly radii are specified, all
the structure coefficients By, in (40) and (41)
have specified values. Also the value of tanm, at
€r is specified. Thus (40) and (41) give two fairly
complicated equations specifying tann, and tann, at
€r. The easiest way to solve these equations is to
feed a setiof values of tann, into (40) and solve for
tann,. The result of doing this is shown as the
dashed curves in Fig. 9. Then one can feed tan7n,
values into (41) and solve for tan7, as shown in the
solid curves of Fig. 9. There is only one set of
values of tann, and tann, at € simultaneously sat-
isfying (40) and (41), i.e., giving an intersection
between the dashed and solid curves of Fig. 9.
(Note that while the curves approach each other
closely in the upper-right quadrant of Fig. 9, they
do not cross. The only crossing is in the lower-
left quadrant. This result was investigated with
great care.) These values are

tanny(€r=0. 8014) = - 0. 1264,
(42)
tann,(ep =0.8014) = — 0. 1655 .

From (c)—(e) and (g), one has the value of tann,

B goo tann, Bggo tann,
Bagotann, Bago tany,

(Bagzotann, + 27V €p) Baazg tanm, 4D
B ooz tanm, (Bggpptann,+ 27V €p)

at €=0.345, €=-0.057, €=0.131, and €;=0.8014,
respectively. This allows one to determine values
of the four parameters in the expression for tann,
of Eq. (14), and these values are listed in Table I.

(h) Take the value of E(I';) (a pure s-like state)
as given by Segall’s H-F calculation. [This is used
only to evaluate the parameter s, in (12), which is
relevant only to the small part of the band structure
where € is negative.] We have

E(T,)=-0.781 Ry— €(T';) = —0.1069 . (43)
Since €(T',) is given by

Ty, 0=Bgyotann+2n Vel , (44)
then

tanm,(e = —0.1069)=0. 2936 . (45)

(i) We use the value of E(Lj ypper) Obtained using
photoemission data to determine tann, at L yyper-

Berglund and Spicer!! have found structure in the
photoemission electron-energy-distribution data
that they attribute to direct transitions from L,. to
L, with an energy difference of 4.2 eV. This would
put L, 3.9 eV above Ez. However, E(L,)-E cannot
be less than the optical onset frequency for interband
transitions which we take as 3.97 eV. Clearly, the
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FIG. 9. Determination of values of tann, and tann,
satisfying Eqs. (40) and (41) and giving experimental
belly radii.

energy from Ep up to L, is about the same as that
down to the top of the d bands, so we take these to
coincide and put

E(Ly ypper) —~Ep=3.97 eV . (46)
This gives
E(L1 upper) =0.092 Ry = €(Ly ypper) =1. 258 . (47)
The determinantal equation yielding €(L,) is
L,,0= (Boggo tanmo + 21 V€ ) Bagoo tann, )
Bgpo tanm, (B ggzg tanny+ 27 V€)
(48)

Since the value of tann, has already been determined
for all €, this allows us to find

tann,(e=1. 258) = — 0. 43758 . (49)

(j) From (g) and (i) we have the value of tann, at
two positive values of €. To evaluate sy, s, and
s3 in (12) it is necessary to specify tann, at a third
positive value of €. It is convenient to do this for
a value of € falling near the maximum in tann,, so
that one gets physically reasonable behavior for the
parametrized tann, at that maximum. Such a value
of € falls in the middle of the d-band complex where
the energy-band behavior is insensitive to the de-
tailed behavior of tann,. Thus any reasonable way
of determining tany, in this € regime will suffice.

To do this we considered the energy W, falling
in the middle of the d-band complex, and specified
by the determinantal equation

- ( BOUDO tanno + 2'” '\/?)
By tanm,

Bgggo tanm,
(Bzozo ta,n'l']z'l- 277 \/z) :
(50)
Now in the two first-principles Ag band calculations
performed by Segall” (that for a potential based on

Wy, 0
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Hartree-Fock free-ion wave functions already re-
ferred to as “H-F,” and that for a potential based
on Hartree free-ion wave functions, referred to as
“H” here), the W, energy fell very close to halfway
between the two L3, purely d-like energies. For H,
W, lay 0.01 above the halfway point between €(Lg,)
and €(Lj,), and for H-F, W, lay 0.02 above the half-
way point. If we regard the relative position of W,
in the d-band complex as a feature of the band
structure to be preserved, then the average of the
H-F and H behaviors leads us to set the W, value of
€ at 0. 015 above the halfway point between €(Lg)
and €(Lj,), so

€(W,)=0.250, (51)
and from (50)
tann,(e = 0. 250)=0. 250 . (52)

Actually, the rather cumbersome procedure de-
scribed above gives a maximum value of tann, al-
most exactly coinciding with that from the first-
principles H-F calculation. Since all we really care
about with regard to the evaluation of tany, for € in

_ the middle of the d-band complex is that the maxi-

mum of tann, behaves reasonably (i.e., tann, does
not go to some extraordinarily large value), the
criterion used here and yielding (52) is quite suffi-
cient.

From the steps (g)-(j) we have the value of tany,
at four values of €. This allows us to determine
the values for the parameters sy, s, s3, and s,
listed in Table I.

This completes the determination of tann,, tann,,
and tann,. We emphasize the difference in impor-
tance between the various constraints on the phase-
shift parameters treated in steps (a)-(j). For ex-
ample, the constraint of step (c), which in effect
sets the energy of the d bands with respect to the
conduction bands, is physically the most important
constraint introduced in our analysis, while step (j)
introduces a very loose and rather unimportant
constraint. We feel that the use of physical judg-
ment in selecting the constraints, and in effect as-
signing their importance, is a strength of the pres-
ent analysis scheme.

Figure 10 shows this phase-shift behavior ob-
tained from our semiempirical scheme compared
to that from Segall’s” H-F calculation. The most
conspicuous change is the shift of the d-band reso-
nance for the phase-shift parametrization calcula-
tion to higher energies relative to the well-defined
features of the conduction-band shifts.

Once the phase shifts have been fully determined,
the band energies can be calculated at a number of
points in the usual way. These are tabulated for
the high-symmetry points in Table IV. The ener-
gies of a number of additional states along symme-
try axes have also been calculated, and the band
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FIG. 10. Comparison of tann,’s for Ag obtained by the
semiempirical phase-shift parametrization scheme of
Table III with those for first-principles calculation (Ref.
7) with potential based on Hartree-Fock free-ion wave
functions.

structure is shown in Fig. 11.

(k) As a check on the reasonableness of our Ag
band structure, we have calculated several quanti-
ties.” First, we have found a neck radius

|k, | € =(0.109+0.001) X 27/a .

This compares to the experimental values of 0.107
X 21/a obtained by Roaf in analyzing Shoenberg’s

de Haas—van Alphen data, !* and the value 0.111

X 21/a found by Bohm and Easterling'® from the
magnetoacoustic effect.

Second, Ehrenreich and Philipp!* have tentatively
identified optical structure associated with the en-
ergy difference E(X,:) - E(X;). Their data give
this difference as 0.684 Ry, while the present cal-
culation gives 0. 678 Ry.

Finally, we have checked the self-consistency of
the Fermi energy used. For the band structure of
Fig. 11, by counting states using the approximate
method used by Segall in his Cu calculations, 8 we
find Ep=-0.207 Ry. Considering the numerical
accuracy of the calculations (especially the approxi-
mation® used to calculate Ey), this is in reasonable
agreement with the value of —0.200 Ry found in step

(b).
IV. CONCLUDING REMARKS

Since we have fed in some of the experimental
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data, our calculation has a great built-in agreement
with key experimental features over an energy range
of almost a rydberg. For example, it is important
to obtain the correct energy separation between the
highest d band and the Fermi level and also between
the Fermi level and the upper (unoccupied) L, and
X, states in order to give the proper onset of the
interband optical transitions. These features of
the electronic structure, and others that are essen-
tially tied to them, are uncertain in an a priori
calculation because of the well-known “sensitivity ”
of the d bands to small changes in the potential; but
they are properly given in our calculation, as il-
lustrated in Fig. 12, by the appropriate use of
empirical data. In Fig. 12, for comparison, the
results of Segall’s H and H-F calculations are also
shown. The band energies have been plotted holding
the L,. energy fixed. The present d-band-to-L,.
energy difference is intermediate to the H value that
was too small and the H-F value that was too large.

In addition to the early work of Segall, ” there
have been several other calculations!®=? of the band
structure of silver. One of these, by Lewis and
Lee, # was an interpolation calculation based on
Mueller’s? method; three of the others were first-
principles calculations; and the calculation of
Jacobs?? combined a largely first-principles calcu-
lation for a limited number of states with an inter-
polation calculation.

Lewis and Lee selected 19 energy levels at I,
X, L, and W from Segall’s H calculation. Those
levels identified as d levels were then shifted down
in energy to give the correct optical interband edge;
and the 10 parameters of the Mueller scheme were
obtained by fitting the 19 energies with an rms
deviation of 0.016 Ry. Thus Lewis and Lee made

TABLE IV. Energies (in Ry) at high-symmetry points
for Ag from semiempirical phase-shift parametrization
scheme outlined in Table III.

State Energy (Ry) State Energy (Ry)
Ty -0.781 Ky —0.688
Typ ~0.626 K, -0.631
Ty -0.556 K, —0.560

K, -0.538
Xy —0.763 K, —0.497
X, —0.748 K, 0.082
X, —0.497 K, 0.159
X5 —0.473
Xy —-0.075 Wy -0.701
X 0.296 W, —0.640

W, —0.553
Ly —0.743 Wi, —-0.473
Ly —-0.634 W, 0.180
Ly —-0.492 Wae 0.292
Ly, —-0.222 W, 0.425
L, 0.092




4 DETERMINATION OF ELECTRON ENERGY BANDS. ..

1745

SILVER—SEMIEMPIRICAL PHASE-SHIFT PARAMETRIZATION SCHEME

(0,0,0) (1,00) (1,0,1”2)  (I”2,172,1/2) (0,0,0) (3/4,3/4,0) 11,0,0)
06
04+ bk 1
4
w2
021+ % N e FIG. 11, Calculated energy bands for
2 AN \\"\N " Ag along the various symmetry axes in f
% A L™ the Brillouin zone and on the zone sur-
=} face. These have been obtained by the
3 FERMI ENERGY semiempirical phase-shift parametriza-
E tion scheme outlined in Table III and
z & were calculated using the phase shifts of
. " Xq Fig. 10.
Az T 2
3 T 5 xz_
L2 o | 2,
ST
1:1_*”0_\-* il ! | X

(a/2m) k

no such comprehensive attempt as the present work
to adjust the first-principles results by using em-
pirical data.

Jacobs? first used a calculation based on the
earlier model Hamiltonian work, for nontransition
metals, of Heine and co-workers? to calculate the
energies at twelve points in the Brillouin zone
along symmetry axes and at points of high symme-
try. This calculation differed from a strictly
first-principles calculation in choosing the core
potential to fit ionic energy levels. Jacobs then
used a model Hamiltonian interpolation scheme
similar to those of Ehrenreich and Hodges' and of
Mueller? to find energies throughout the Brillouin
zone. Without further empirical adjustment (such
as Jacobs?? did for Cu and Au), the results of this
calculation do not give sufficiently accurate agree-
ment with the experimentally indicated energy dif-
ferences. For example, the L,.-upper-Lj; energy

difference is calculated as 0.325 Ry, while the ex-
perimental value [see (a) and (c) of Sec. III] is
0. 270 Ry.

Of the three first-principles calculations, !8=2
those by Snow'® and by Christensen®® give results
that are most reasonable in comparison with ex-
periment. In Table V, we compare our results
with the results of those calculations for some en-
ergy differences giving the width of the sp band and
d band and their relative positions with respect to
each other and to the Fermi energy. Of Snow’s two
calculations, the one using % of the Slater-exchange
term gives results closer to experiment, and we
will restrict our discussion to that calculation.
Christensen actually investigated the band structures
for seven different potentials, and selected the
“best” one on the empirical basis of agreement
with the experimental data. (This was for his po-
tential labeled V, based on relativistic Dirac-Slater

TABLE V. Ag energy-state differences (in Ry).

Tose = Ty X;—-Ty X5—X, X4 =Ty Ep—X;5 Ep—Lg Ep—Ly. Ly—Ly.
Segall:
Hartree 0.267 0.404 0.264 0.673 .143 0.158 0.032 0.316
Hartree-Fock 0.078 0.196 0.244 0.730 .365 0.382 0.002 0.187
Snow:

Slater=1 —-0.011 0.105 0.198 0.665 . 387 0.400 -0.013
Slater=§ 0.090 0.221 0.235 0.667 . 290 0.304 0.007 s
Christensen: 0.104 0.227 0.235 0.671 .304 0.302 0.022 0.319

V potential
Present calc 0.155 0.308 0.290 0.706 . 266 0.292 0.022 0.314

semiempirical
phase-shift
parametrization
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J FIG. 12. Comparison of Ag band
A, structure near symmetry point L in
Brillouin zone for semiempirical phase-

\ TG shift parametrization calculation with

those from first-principles calculation

(Ref. 7) with potentials based on Hartree
and on Hartree-Fock free-ion wave func-
tions.
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atomic calculations with full Slater exchange in both
the atomic and crystal calculations.) So in a sense
his work amounts to a semiempirical fitting scheme,
however, not a systematic one. (Note that Christen-
sen’s best results are for full Slater exchange,
while Snow’s best results are for 3 of the Slater-
exchange term.) As already pointed out, our bands
give excellent agreement with the experimental neck
radius. This is also true for Christensen’s V, po-
tential, but Snow’s value for the neck radius is only
about % of the experimental value. (Also, unfortu-
nately Snow’s band calculations do not extend to high
enough energy to give the behavior of the upper-L,
energy.) As shown in Table V, both Snow’s ¥
Slater-exchange results and those for Christensen’s
V4 potential are intermediate between Segall’s H-F
and the present results at the lower energies, and
are close to the present semiempirical phase-shift
parametrization results for energies near the Fermi
energy. This reflects the fact that the main differ-
ence between the band structures of Snow and of
Christensen with the present band structure is that
our d bands, chosen to agree with the photoemission
results of Eastman and Cashion, 2 are wider.

Finally, we would like to make a few brief re-
marks about the nature and use of the phase-shift
parametrization scheme, and the possibilities for
improvement in the scheme.

In this regard, we would first like to point out that
rather than choosing the tann,’s as the fundamental
quantities to parametrize, we could have chosen to
parametrize the logarithmic derivatives of the
radial wave function, which in turn give the tann,
by Eq. (2). We intend to investigate further the
question of the relative merits of parametrizing the
logarithmic derivatives as opposed to parametrizing
the phase shifts directly as done in the present

work. However, we will make a few brief remarks
here.

The attraction of parametrizing the logarithmic
derivatives is that those quantities contain all the
information about the potential, and only that infor-
mation., It is possible that the avoidance of lumping
in information about the Bessel functions might lead
to a somewhat simpler and/or more accurate pa-
rametrization of the logrithmic derivative than of
the tanm, directly. (This is especially true for [ =0,
where the Bessel function gives a cusp in tany, at
€=0. On the other hand, the € dependence of the
logarithmic derivatives is not so simple as to make
likely a radical reduction in the number of param-
eters required.) Whether such a gain will exist in
practice will probably depend on the sensitivity of
the accuracy of the energy eigenvalues on the degree
of cancellation in the numerator of Eq. (2), i.e., a
small absolute error in the logarithmic derivative
can imply a large relative error in tany, when tanyp,
is small. Such cancellation reflects the similarity
of the band energies to the free-electron energy;
and, of course, as tann, goes to zero such effects
do not matter. (Indeed, just such cancellation ef-
fects provide the justification for neglecting tann,’s
for 7 >2.) The only question is a quantitative one,
viz., do cancellation effects cause significant in-
accuracy before tann; becomes negligible? (One
should remember that because of our demand for

‘high accuracy, we may be forced to concern our-

selves with rather small differences.) An investiga-
tion we have initiated should answer such questions.
In connection with the possible utility of our study
of the energy dependence of the electronic phase
shifts, we should point out that there has been con-
siderable recent interest in a related, but different
use of the phase-shift parametrization concept than
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that made here.?*%® This is the adjustment of the
Fermi energy and the phase shifts at that energy to
very accurately fit experimental Fermi-surface
data. There is a severe problem for this technique
in that it fails to provide a unique set of phase shifts
and Fermi energy. Constraining the variation of
the phase shifts with energy to satisfy (14), (16),
and (18) may help to eliminate this ambiguity.

In conclusion, our phase-shift parametrization
scheme aims at accurately describing the energy
bands across a large energy range. One of its great
virtues is that this scheme allows empirical adjust-
ment of the band structure (in effect correcting the
initial first-principles potential by incorporating
experimental data) to be made in a particularly
physically transparent way. The cost for this com-
bination of accuracy and conceptual physical sim-
plicity is having to deal with a determinantal equation
requiring more time to solve than the simple secular
determinantal equation used in some other
schemes.? That is, as discussed in Sec. I, we
have devoted our efforts to the aim of effectively
incorporating experimental information about the
solid state into the potential, rather than to the aim
of improving the speed of the band calculation per
se. The main computational difficulty, of course,
.is in the proper treatment of the energy and k-
dependent structure coefficients. Any developments
improving the speed of calculation of these coeffi-
cients, whether through improved computer tech-
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nique or by the use of approximations, would greatly
enhance the utility of the phase-shift parametriza-
tion scheme. This might involve deciding on some
compromise between the complexity of form of the
tann, (€) necessary for great accuracy and the sim-
plicity desirable for facility in manipulations.
Combining a fast approximation scheme for effec-
tively calculating the structure coefficients with the
phase-shift parametrization method would be most
valuable in dealing with rather complex properties,
such as strain and deformation effects, optical and
magnetic properties. In any case, knowledge about
the phase shifts associated with a particular atomic
species as gained in the application of the phase-
shift parametrization method (such as in our semi-
empirical study of silver) will be of great importance
in itself for understanding such properties. Since
the phase shifts embody the structure-independent
information about the solid, such knowledge would
be particularly valuable for treating the electronic
properties of different structural phases of a given
element, of intermetallic compounds, and of solids
such as alloys, thin films, and amorphous materials
where one, at least partially, loses lattice transla-
tional symmetry.
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The radio-frequency size effect has been used to study the Fermi surface of magnesium.
These experimental data are then compared with a detailed mathematical model of the Fermi
surface. The agreement is very good, confirming the accuracy of the experimental technique
and the mathematical model. However, certain problems of data interpretation seriously limit
the applications of the radio-frequency size effect for the study of unknown Fermi surfaces.

Experiments for which this technique is better suited are discussed.

I. INTRODUCTION

The radio-frequency size effect (RFSE) is a
relatively recent technique for the study of the
Fermi surfaces of metals. Since the initial exper-
iments on tin by Gantmakher,! this technique has
been applied to an ever increasing variety of met-
als. The primary attraction of this method is its
ability to give accurate measurements of Fermi-
surface caliper dimensions. When combined with
the relatively simple experimental apparatus that
is required, the RFSE offers a powerful and con-
venient tool for the study of metallic Fermi sur-
faces.

Full references to the early work with the RFSE
are contained in the review articles by Gantmakher?
and by Walsh.® Most of this work falls into two
categories: the study of known simple Fermi
surfaces in order to obtain a better understanding
of the RFSE itself, and the study of unknown
complex Fermi surfaces in order to learn about
the band structure of the particular metal. Both
of these approaches fail to define the limitations
to the use of the RFSE: the former, because a
simple surface, as in potassium, % does not present
the problems of interpretation that can arise with
a complex surface; the latter, because an un-
known surface, as in gallium, ° provides little or
no basis for resolving problems of interpretation.

One of the purposes of this paper is to define
more clearly some of the limitations in the use-
fulness of the RFSE. The results of this study
make it possible to suggest areas where the RFSE

can be used to great advantage. But to do this,
it is essential to use a metal whose Fermi surface
is both topologically complex and well known.

Magnesium is well suited to these goals. On
the one hand, it has a geometrically complex
Fermi surface which can be expected to cause a
variety of complicated effects in the experimental
data. It is just such effects that are important for
this study since their interpretation is one of the
major problems in the use of the RFSE.

On the other hand, the Fermi surface has been
accurately measured and described in terms of a
detailed band-structure model by Stark et al.%™8
Calculations based on this mathematical model
can be compared directly with the experimental
data, even for the most complicated signals. In
this way, the accuracy and reliability of the ex-
perimental method can be clearly defined.

II. SIZE EFFECT

From a purely experimental viewpoint, the RFSE
measures the rf power absorption in a metal sam-
ple as a function of static magnetic field strength.
The problem then is to relate this power absorp-
tion to the motion of the electrons in the sample.
As is implied by the name “size effect, ” this
motion is expected to be strongly influenced by the
presence of the sample boundaries as well as by
the static magnetic field and the Fermi-surface
geometry.

The purpose of the rf field is to interact with
the electrons in the metal and thereby probe their
motion. But since the rf field penetrates only a



